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ABSTRACT

Wildfire occurs over a wide range of spatial and tem-
poral scales.  Typically, patterns of wildfire spread are
modeled using fine-scale, mechanistic equations or
broad-scale, probabilistic equations.  Both modeling
approaches use some form of fuel, climate, and topog-
raphy variables.  Mechanistic approaches look at the
small scale constraints (e.g., percent of moisture in
fuel) that enable a fire to keep burning.  In probabilis-
tic models fire spread is determined by the size and
connectedness of fuel patches distributed across the
fire landscape.  Both approaches assume the fire be-
havior environment is a simple system that can be de-
scribed with simple equations, but that assumption
holds true only over a very narrow range of scales.  A
complex systems approach to modeling fire behavior
involves not only knowing what variables are constrain-
ing fire growth at a fine scale but also which constraints
are absent at a broad-scale, allowing a fire to spread
unchecked.  Possession of highly detailedinformation
on system variables will not inform you where the sys-
tem is going because small changes in the context will
change the importance of certain variables.  What is
important are the cross-scale relationships between the
upper-level context and lower-level constraints to the
predictor variables of the model.  Existing fire models
lose predictive power when subtle shifts in environ-
mental variables cause qualitative changes in fire be-
havior, that is, when the system’s behavior changes
scale.  Artificial neural networks (ANNs) are designed
for problems with cross-scale relationships that pro-
duce non-linear changes in system behavior.  The ANN
framework provides a comprehensive integration across
scales of fire environment variables.  The ANN is able
to determine the equations describing those cross-scale
interactions and better predict where a fire will spread
as a result.  This better predictive capacity is needed in
light of global climate change and increasing human
habitation in rural areas.

INTRODUCTION

The need for a meso-scale wildfire model stems from
a Forest Service initiative to assess and analyze fire-

regulated ecosystems in the northern Great Lakes
States.  Forest Service research activities in the Lake
States have included fire occurrence factor analyses
(Cardille 1998) and disturbance regime mapping for
certain subsections within Province 212 (Keys, et al.
1995).  A useful fire model should be appropriate for
use on National Forests and surrounding lands within
the Province and facilitate the development of alterna-
tive strategies for ecosystem management.  Linking
the model to a forest succession model will aid in plan-
ning and evaluating burning as a land management
practice.

We model fire to better manage fire and its effects on
ecosystems, communities and landscapes.  Some fire
models are stand-alone while others are modules within
larger land cover dynamics models.  Extant fire mod-
els operate at many scales, use different predictive equa-
tions, and produce numbers or maps representing fire
frequency, severity, spread rate, burn pattern or risk.
A meso-scale fire model is needed for several reasons.
Many fire models were originally developed for the
conifer-dominated forests of the western U. S. Ecosys-
tem differences (e.g., wind/elevation interactions, land-
form and cover type characteristics, etc.) may make
these model structures inappropriate for the Great
Lakes ecoregion.  Wildfire modules within larger for-
est succession models lack the resolution required for
most forest-level management and planning efforts.
Increasing human presence on and around forested
lands in the region raises the potential for conflicting
land management scenarios (Plevel 1997).  Therefore,
forest land managers recognize the need for a wildfire
model specifically applicable to the northern Great
Lakes ecoregion.

The unique aspect of this model is the use of an artifi-
cial neural network (ANN) as the decision-making
engine.  An ANN-based wildfire model is distinctive
in comparison to contemporary models.  Extant fire
models have their strong points, but ANN models of-
fer advantages for some data availability and field situ-
ations in two ways.  First, they integrate relationships
between fire environment variables (fuel, topography
and climate) relating to fire behavior that occurs at
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multiple spatio-temporal scales.  Second, they allow
the capture and analysis of cover, landform and cli-
mate interactions that may be unique in time and space
with respect to predicting fire spread.

The ANN model structure should be robust in predict-
ing wildfire burn patterns over the range of fire envi-
ronments present in the ecoregion.  Traditional mod-
eling approaches require that the rules relating input
to output be known a priori.  Accuracy of the predicted
variables relies on the precision of the input variables,
so a lack of data for one component module or equa-
tion will cause the whole model to fail.  In contrast,
ANN models need no explicit statement of the rules
(they will be learned via inductive reasoning), are fault
tolerant (due to redundancies within the network), and
can function with noisy or partial data.

ARTIFICIAL NEURAL NETWORKS

Haykin ( 1994) defines a neural network as “. . . a
massively parallel distributed processor that has a natu-
ral propensity for storing experiential knowledge and
making it available for use.”  Artificial neural networks
acquire knowledge by learning from examples and store
that knowledge as synaptic weights in connections (net-
works) between processing nodes (neurons).  ANNs
have the ability to model complex functional relation-
ships predefining the behavior and interactions of all
the pertinent components (i.e., the rules are not known).
The pattern emerges through positive feedbacks that
eventually press against global constraints that define
structure.  ANNs reduce the need to write “rules” based
on expert knowledge.  Neural networks determine these
rules by mapping directly from input to output with a
blind, but effective, search strategy (Sui 1994).  A
trained network can respond non-linearly to input val-
ues, where a small change in one or several inputs can
result in an exponentially greater output response.
Conventional modeling techniques do not readily do
this unless the relationships are known a priori.  Since
their inception, artificial neural networks have been
trained to perform tasks that appeared impossible for
conventional computer programming techniques, for
example, steering a car under new or unknown condi-
tions, reading hand-written postal zip codes, or recog-
nizing spoken language (Dukelow 1994).

Basic ANN Architecture

Conceptually neural networks are quite simple and can
be represented as graphs composed of a series of linked
nodes (Figure 1) that represent biological neurons and
their connections.  Multi-layered, feed-forward net-

works are acyclic graphs and have a series of nodes
arranged in layers (input, hidden and output), with
links between every node in adjacent layers (Figure
2).  Full connectivity is not a requirement for a func-
tioning neural network.  There are typically only one
input and one output layer.  A network with one hid-
den layer can learn most continuous functions, while
multiple hidden layers can learn discontinuous func-
tions (Russel and Norvig 1995).  Each link in the net-
work has a numeric weight, the strength (value) of
which relates to the local node’s effect on the whole
network.  Input values are multiplied by the weights of
the input links leading to each node in the hidden layer
(Figure 1).  Each node in the hidden and output layers
performs two functions: a linear summation of the
weighted inputs and then a nonlinear transformation
of that sum using an activation function (Russel and
Norvig 1995).  The activation function produces an
activation value for each hidden node that is “fed for-
ward” to the output layer.  The nodes of the output
layer also calculate a weighted sum, and the activation
function produces the output value.

Figure 1. A neural network processing unit.
(Adapted from Russel and Norvig 1995)

Figure 2. A single-hidden layer feed-forward artifi-
cial neural network.  (Adapted from Russel and
Norvig 1995)

QUALITATIVE ANALYSIS OF THE
FIRE ENVIRONMENT

Wildfire occurs over a continuous spatio-temporal
range (Simard 1991; Turner and Dale 1991).  The el-
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ements of the fire environment triangle - fuel, weather
and topography - also vary continuously over the range
of scales that wildfire occurs.  Approaches to model-
ing wildfire spread patterns are either fine-scale mecha-
nistic or broad-scale probabilistic (McKenzie, Peterson
and Alvarado 1996).  While both approaches correlate
observed fire behavior with fuel, climate, and topogra-
phy variables, they only work within a narrow, fixed-
scale range.  Mechanistic approaches scale locally to
what keeps a fire burning, while fire spread in proba-
bilistic models is constrained by the rate of percola-
tion across the landscape.  To work within a meso-
scale range, both approaches extrapolate model results
up- or down-scale, or aggregate fire environment vari-
ables to the desired scale of analysis.  Extrapolating
up-scale from physically-based equations or down-scale
from statistically-derived landscape variables results
in less predictive power because the relationships be-
tween the fire environment variables change in a com-
plex, non-linear manner as the scale shifts away from
that of the original model.  Changing spatial and tem-
poral scales of fire environment variables leads to the
inherent unpredictability found in middle number sys-
tems (Weinberg 1975; Allen and Starr 1982).

Small number considerations, like our planetary sys-
tem, are predictive because one can account for the
behavior of each component with one equation for each
part.  Large number systems, e.g., the gas laws, have
so many parts (N > 6.02x10 23 , Avogadro’s number)
that statistical techniques are employed to predict over-
all system behavior based on the assumed average com-
ponent.  Middle number systems lie between the do-
mains of these two approaches; there are too many
components to account for the behavior and interac-
tions of all the parts, but too few to permit the assump-
tion of uniform behavior.  Middle number systems are
extremely sensitive to initial conditions because any
component or process may enter into feedback and
come to dominate system behavior.

Fire literature has focused on either the constraints on
fires raging or the constraints on fires surviving, but
not both sets of constraints.  Each class of model is
predictive to a limited degree.  What is needed, and
what ANNs provide, is prediction in the context of both
sets of constraints simultaneously.  Switching con-
straints, however, means predicting within a middle
number domain where one set of constraint factors is
historical, and the other can be captured in a relatively
mechanistic account.  Since history and mechanism
are not compatible, our meso-model cannot be purely
mechanistic or probabilistic.  In the middle number
domain, fixed scale simulations or fine-scale, physi-

cally-based models lack sufficient flexibility and miss
important dynamic interactions.  Predictive modeling
of fire behavior involves knowing what variables are
constraining fire growth or which constraints are ab-
sent allowing unchecked positive feedback between fire
and fuel.  Extant fire models lose predictive power when
subtle shifts in environmental variables cause a quali-
tative change in fire behavior.

Most modeling approaches select and theorize about
environmental parameters based on observations and
expert knowledge.  Parameters are calibrated using rea-
sonable assumptions and probabilities to incorporate
processes that are well understood or easily encoded.
Once calibrated, parameters are dealt with as constants
in models.  This fixes the scale over which the model
is valid and limits the resolution.  On average, work-
ing models behave as expected and give solid results
when parameters do not exceed their normal range.
Models often fail to predict larger events because those
events lie beyond the averaged model parameter val-
ues and the process is initiated by a low probability,
but ecologically possible, alignment of environmental
conditions.  Fixed-scale models are often inflexible,
only valid within a narrow state space, and provide
inadequate responses during conditions when the mod-
eled system switches from being controlled from be-
low by internal processes to being controlled from above
by external constraints.

System Scaling

O’Neill, et al. (1986) show that hierarchy theory (Allen
and Starr 1982), when applied to ecosystem processes
and functions, can provide a useful approach to situa-
tions that appear middle-number.  By empirically de-
termining and hierarchically ordering the system rate
variables, we limit the imposition of predetermined,
human-based scales on our analyses.  In discussing
fire and insect effects on boreal forest ecosystems,
Holling (1981) describes a simulation model that re-
quires equations with 78 variables to predict adequately
spruce budworm dynamics in only one forest patch.
With 393 patches in the affected area, a comprehen-
sive simulation model would contain more than 30,000
variables.  Using a topological approach, the 78 local
variables reduced to three rate sets relating to bud-
worms (fast, months), foliage condition (intermediate,
years), and crown volume/hectare (slow, decades).

While the topological approach is qualitative in na-
ture, it is very instructive in understanding how and
why system dynamics change with a change in vari-

Contributed Papers from the Modeling  Session



The Joint Fire Science Conference and Workshop4

able values.  Where the simulation model provides de-
tailed, essentially mechanistic, explanations of what
happens in the system, its complexity precludes un-
derstanding how and why results are produced.  Holling
(1981) presents a similar topological analysis of fire
(Figure 3).  Fire intensity is the fast variable, fuel in-
termediate, and trees slow.  This simple model shows
an equilibrium manifold (solid line) where the region
to the left of the line represents conditions where self-
sustaining fire is not possible.  Along the curve and to
the right, fuel conditions and fire intensities are suffi-
cient to sustain combustion.  The line at B represents
the average intensity of random ignition events.  Fuel
conditions less than A do not allow sustained fire un-
der any intensities.  As fuel condition increases toward
C, the regular, random ignitions would result in a self-
sustaining fire whenever C was reached.  Fire sup-
pression or changing climate deflects the lower arm of
the equilibrium manifold upward, preventing sustained
combustion at lower fuel conditions (slow variables
constraining fast).  Over time tree crown cover in-
creases, creating conditions capable of sustaining a
crown fire, a significant change in state of the inter-
mediate variable.  Eventually a hot, dry year will oc-
cur, and while fast atmospherics still control the fast
fire variables, previous slow variable constraints have
set the stage for large scale conflagration (Figure 3, E
to F).  The manifold in Figure 3 assumes that tree den-
sity, the slow variable, is in some type of equilibrium;
the manifold aids in understanding why a landscape
experiences regular and periodic fires of moderate in-
tensity (D) despite frequent, random ignitions.

Figure 3. Fire environment manifold.  (Adapted
from Holling 1981)

Fire behavior always involves the question of what
variables will be controlling, providing the constraints
on fire, or which constraints are absent, allowing un-
checked positive feedback between fire and fuel.  Fixed-
scale simulations or fine-scale, physically-based mod-
els lack sufficient flexibility and will miss important
dynamic interactions.  Management use of these mod-
els will result in surprise (Holling 1986).  By ignoring
spatial aspects and folding other temporal variables
into only three, topological analyses offer an under-
standing of fire behavior at any spatial scale (e.g.,
needle, tree, stand, forest).  Atmospheric variables can
also be represented as fast (relative humidity, precipi-
tation), intermediate (seasonal temperature and annual
precipitation), or slow (climatic averages over decades
or centuries) (Figure 4).

Fire models based on Rothermel’s (1972) equations
use fast atmospheric variables to predict fire intensity
with fuel models that implicitly incorporate interme-
diate and slow climatic variables (Figure 4).
Rothermel’s analysis (Rothermel 1991) of model pre-
dictions during the 1988 Yellowstone fires shows how
reliant the equations are on fast/fine scale informa-
tion.  Extant models appear to map between fire and
landscape but only weakly to atmosphere, or between

Figure 4. Time and space scales for the boreal for-
est and their relationship to some of the processes
which structure the forest.  Contagious meso-scale
disturbance processes provide a linkage between
macro-scale atmospheric processes and micro-scale
landscape processes.  (Adapted from Holling, et al.
1996)
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fire and atmosphere but only weakly to landscape.
These models make only simple connections between
the elements in Figure 4 over a narrow scale range.
An adaptive model would seek connections across
multiple scales, creating pathways among all levels of
slow-intermediate-fast and micro-meso-macro vari-
ables.

It is easy to extrapolate the manifold line (represent-
ing a compression of the other variables in a complex
fire environment, Figure 3) to an n-dimensional space,
and hypothesize that subtle shifts in several variables
will shift the bottom of the manifold up or down, cross-
ing B at different locations.  This complex view of fire
is well modeled with ANNs, since fast, intermediate
and slow variables can be somewhat isolated within
the network, having only minimal connectance to other
portions of the network.  The ANN framework pro-
vides a comprehensive integration across scales of bi-
otic and abiotic variables.  The actual equations de-
scribing those cross-scale interactions are contained
in the weights of the network.

EXTANT FIRE MODELING
APPROACHES

All fire models look at fire spread from the standpoint
of the flames pushing the fire front along if fuels are
available or wind is strong enough.  Results from some
fire spread models suggest that different upper-level
elements are controlling under varied environmental
conditions (Green, Tridgell and Gill 1990; Gardner,
et al. 1996).  Through repeated simulations these mod-
els can determine the degree to which a given land-
scape is connected (i.e., able to carry a fire), when it is
above or below some critical threshold value (Green
1994; Turner, et al. 1989).  Information on percola-
tion thresholds is needed for fire management of
present-day landscapes and should be incorporated into
wildfire models.  Indeed, Turner and Romme (1994)
and others (Simard 1991; McKenzie, Peterson and
Alvarado 1996) discuss the need for a link between
fine-scale mechanistic and broad-scale probabilistic
wildfire models.  They point directly to the essential
need to be able to determine when landscape pattern
or fire-line thermodynamics provides the more impor-
tant constraint on wildfire spread.

Wildfire models (e.g., Andrews 1986; Finney 1996;
Gardner, et al. 1996; Clarke, Brass and Riggan 1994)
operate by encoding endogenous fire processes (e.g.,
rate of spread, intensity, etc.).  While each fire model
has different, specific input requirements, any model
of wildfire will require, in general, fuel, weather, and

topography data (Fons 1946).  What is usually ne-
glected in mechanistic models of wildfire is the over-
lying landscape structure and variable climate that
serves as context for and constraint on disturbance pro-
cesses (Allen and Hoekstra 1992; Holling, et al. 1996;
Simard 1991).

For simplicity ecosystem models usually only incor-
porate two hierarchical levels (Holling 1995).  Incor-
porating fire regime into these model sets intermedi-
ate variables of fuel and weather as the lower-level
context; the model then simulates effects on forests
with variation in climate (both, higher-level, slower-
acting variables).  Alternatively, physically-based fire
models encode low-level, fast combustion processes and
scale-up to stands and forests.  Local, human impacts
on the biosphere are having global effects (e.g., rising
CO2 levels), crossing scales and ecological disciplines.
Human society is now acting on a scale and at a rate
equivalent with ecosystems, so our models must start
to include variables from more than two hierarchical
levels.  The difficulty in modeling these effects has
been in connecting processes operating at vastly dif-
ferent rates (Allen and Starr 1982).  Encoding each
process with its own time step would be cumbersome
and lead to very complicated models.  Even if the com-
puter code could capture the details of a single pro-
cess, the cross-scale interactions of different processes
are not likely to be known or knowable.

Other Approaches to Modeling Fire

Other recently developed models have taken advan-
tage of raster-based simulation concepts (e.g., cellular
automata (CA) and nearest neighbor decision rules) to
incorporate concepts of diffusion (Clarke, Brass and
Riggan 1994), percolation (Green 1993b), or conta-
gion (Li and Apps 1996; Gardner, et al. 1996) in
spreading fire across a landscape.  CA are a 2-dimen-
sional array of cells with values that represent the glo-
bal state of a variable.  Each cell is a computer and
updates its state at each time step based on the state of
its neighbors (Green 1993a).  Limiting interactions to
immediate neighbors makes CAs easy to computerize,
and the efficient processing is often used to model com-
plex systems (Karafyllidis and Thanailakis 1997).  Most
CA models of fire spread require some estimate of the
burn potential for each cell prior to running the model.
The probabilities are often stochastic in nature, and
multiple runs are used to develop a map of fire risk.
Cellular automata have been implemented in fire mod-
els using Rothermel’s (or others) rate of spread (Ball
and Guertin 1992; Karafyllidis and Thanailakis 1997),
Huygens’ principle (French, Anderson and Catchpole
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1990), nearest-neighbor movement rules (Bryant, et
al. 1993; Ratz 1995) and invasive epidemic processes
(Green, Tridgell and Gill 1990).  Clarke et al. (1994)
present a unique method of fire propagation in a CA.

Using only local rules means that the emergent pat-
tern often represents what is physically possible, though
not necessarily ecologically allowable (Allen and
Hoekstra 1992).  CA fire models often produce dis-
torted or unnatural fire boundary shapes (French,
Anderson and Catchpole 1990; Ball and Guertin 1992).
By using only nearest neighbor rules, CA models do
not incorporate a context, the ecological constraints
that limit the total range of physically possible to a
smaller subset of ecologically allowable structural and
organizational configurations.  The ANN model, while
grid-based, makes local decisions but also incorporates
information from the surrounding landscape to pro-
vide a context.

CONCEPTS OF ECOSYSTEM
CHANGE

Humans, fire, wind, disease and insects are the major
agents of change in forests.  Fire is a perturbation at
the scale of a tree, while at the scale of a forest, fire is
an integral, endogenous ecosystem process (Allen and
Starr 1982).  While fire kills individual trees, it ini-
tiates a cycle of stand renewal, often ensuring the sur-
vival of the tree species.  Fire operates over multiple
spatio-temporal scales, and characteristics of the vari-
ables that control fire behavior also vary in time and
space.  Topography is relatively stable over time but
exhibits great spatial variation.  Fuel and climate vary
in both time and space.  Fuel is stored energy on the
landscape (Sapsis and Martin 1993).  Fuel state de-
scribes the moisture content of live and dead fuels.
Change in fuel state can be rapid (daily) or intermedi-
ate (seasonal/annual).  Fuel type refers to species, spa-
tial arrangement (vertical and horizontal) and density.
Fuel accumulation after a fire is generally a slow pro-
cess that can continue for 100 years or more, although
some disturbances (insect outbreaks, disease,
windthrow) will cause more rapid fuel accumulation.

Fire alters the condition and arrangement of abiotic
and biotic elements on a landscape, and species re-
spond to the changed environment.  The type of veg-
etation that returns after a fire determines in part when
fire will return and how severe its effects will be.  This
positive feedback loop between species and fire can
develop into a relatively stable system over time, as-
suming that large scale climate (the upper-level con-
straint) remains constant.  With shifting climate, hu-

man impacts and exotic invaders, present day fire re-
gimes cannot be readily discerned from historical data
(Schoonmaker effects they want to produce with fire,
and determine an appropriate fire regime to meet those
expectations (Pahl-Wostl 1998).  The scale of the un-
derlying disturbance regime(s) and the physical space
on the landscape required for disturbance processes to
occur are important factors to consider when develop-
ing any meso-scale model of fire.

Rowe (1983) identified five life history mechanisms
that plants use in response to different fire regimes.  In
areas that experience a range of fire severities, a spe-
cies may employ several of these strategies to survive.
Fire suppression favors avoiders and results in densely
stocked, late successional forests.  The key point is spe-
cies are not the relevant entities with respect to fire
regime, rather Rowe’s strategy categories are.  Fire in-
terval will equilibrate through positive feedback with
vegetation (ordered along Rowe’s strategy categories)
to maintain fire intensity and severity.  Fire intensity
is a fast, local variable (low level dynamics).  The lag
in the period over which fuel accumulates on the land-
scape (intermediate variable in space and time) acts to
constrain intensity.

To achieve environmental constancy (i.e., an equilib-
rium) one is required to fix scale in space and time.
By averaging variability in time and graininess in
space, an emphasis is placed on nature as a constant
over time.  This leads to management policies that are
unprepared for and surprised by change (Holling 1986).
Figure 5d represents an equilibrium-centered view of
the material world where the ball, i.e., environmental
variables, always returns to a single stability point fol-
lowing disturbance (Holling, et al. 1995).  A more dy-
namic view of change (Figure 5a) incorporates mul-
tiple stability points.  Equilibrium views assume lin-
ear causation wherein a small change in an environ-
mental variable causes only a small change in system
state.  Multiple stable equilibria indicate spatial and
temporal variability and nonlinear causation.  Plan-
ning and policy derived from an equilibrium basis will
not recognize stable configurations beyond the one in
which the system resides.  Continual, constant envi-
ronmental change displaces the ball short distances
over time (Figure 5b), yet the system state appears to
be within the same basin of attraction (linear change
in environmental variables).  Further small changes
in the environment result in a sudden, nonlinear change
in state, with the system moving to another stability
point (Figure 5c), a surprise from the equilibrium view-
point (Holling 1994).
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Figure 5. Equilibrium diagrams.  (Adapted from
Holling, et al. 1995)

taining structures to characterize system behavior
(Holling, et al. 1996).  Because complex systems do
not permit the definitive answers of traditional hard
science approaches, a methodology of complex systems
is needed to provide soft answers with good explana-
tory power.

Disturbance regime and landscape equilibrium are
powerful concepts in understanding community and
ecosystem development through time.  Quantifying re-
gime or equilibrium require that space, time, or both
be fixed so that the concepts are scale dependant
(O’Neill, et al. 1986).  There is also the assumption
that climate and vegetative composition do not change
significantly.  Regimes are typically presented as aver-
ages for a landscape when they actually come from
multiple disturbances of varying severity, size and sea-
son.  Regime-based models are very instructive in the
analysis of historic landscapes or gaining insight on
potential future patch dynamics.  They are not, how-
ever, highly informative for current forest management
and planning, because the forested landscapes and veg-
etative communities from which the regimes derive
no longer exist (and probably will never again), the
spatial presence of species on the landscape has
changed, new species have been introduced, native
species have been greatly reduced or eliminated, cli-
mate has changed or is currently changing, humans
have greatly increased ignition sources, and human
intervention (suppression) alters final fire size and
shape.  Fire regime needs to be predicted from a model,
not be an element within a model (Li and Apps 1996).

ANN models address these concerns.  The non-linear
response nature of ANN architecture facilitates learn-
ing and generalization on a wide range of input and
output values (Haykin 1994).  An ANN can accept cat-
egorical data as well as continuous.  Assumptions about
the distribution and independence of the input data
are not as vital to constructing an effective network as
they are to more conventional statistical analyses (Sui
1994).  The changing spatial and temporal scales of
fire environment variables used in modeling wildfire
in the Lakes States present the modeler with all the
problems inherent in middle number systems.  Em-
ploying ANNs allows modeling the meso-scale fire en-
vironment in a highly powerful and predictive man-
ner.  Even though on the face of it the system appears
middle number, the ANN explores system structure
until, at an appropriate level of analysis, prediction
becomes possible.  The ANN recasts the parts of the
question so that behavior becomes reliable.  It filters
out middle number specifications by elimination of
pathways that do not provide repetitive behavior.
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COMPLEX SYSTEMS: A POINT OF
DEPARTURE

Mechanistic models of single processes are often pow-
erfully explanatory in regard to the behavior of indi-
vidual system components, but attempts to assemble
satisfactorily predictive, unified models from these
components have been largely unsuccessful (Ulanowicz
1997).  The ability to predict whole system behavior
from mechanistic models fails because it is impossible
to anticipate and account for the effects of every subtle
aspect of system behavior.  Current ecosystem and dis-
turbance models are constructed in an explicit man-
ner, defining exactly how modules and equations and
variables react and interact.  The whole system in its
infinite detail is not the right referent; the focus should
be on prediction with regard to phenomena (Allen and
Hoekstra 1993).

The questions asked of ecological systems often gen-
erate middle number models (O’Neill, et al. 1986).
Attempts to seek mechanistic causes for overall sys-
tem behavior through the approaches favored by tradi-
tional hard science cannot yield explanations and quan-
titative answers that are definitive when a middle num-
ber system is invoked.  Funtowicz and Ravetz (1994)
have noted that cause and effect explanations have lim-
ited power because in complex systems these categori-
cal distinctions disappear.  Ecological systems invite
casting them as complex, and complex systems require
different causal models.  A complex systems approach
incorporates the explanatory power of positive and
negative feedbacks and the recognition of the emer-
gence of hierarchically self-organizing and self sus-
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Fuel Models

Rothermel’s original equations assume that the fire is
burning through a uniform fuel, across a flat terrain,
and with no wind.  These simplifying assumptions
made the original specification of fire behavior equa-
tions possible.  Mechanistic fire models based on
Rothermel’s equations inherited those simplifying as-
sumptions.  Fire behavior research over the past 30
years has dealt primarily with how to translate the re-
lationships found in the simple fire environment of a
test laboratory to the very complex fire environment
found in the outside world.

We need to accept that the highly controlled condi-
tions found in a fire behavior laboratory are rarely if
ever found in human managed ecosystems.  The land-
scapes that humans manage fire on have highly com-
plex fuel associations, variable terrain, and unpredict-
able weather conditions.  A new theory of meso-scale
fire modeling must start with the foundational assump-
tion that the fire environment is complex and varied.
Predictions in fire environments beyond Rothermel’s
fine-scale equations are accomplished by adding modi-
fying parameters to the original equations.  This elabo-
ration of structure is considered mere complication by
Allen, et al. (1999).  The proposition here is an elabo-
ration of organization when assessing real fire envi-
ronments.  Our hierarchical complexification, as dis-
tinguished from complication by Allen, et al. (1999),
in the analysis of fire accepts and incorporates the dif-
fering spatio-temporal resolution of the fire environ-
ment variables.  Input data can be maintained within a
GIS as close as possible to original scale and resolu-
tion, and ANNs can be used to learn the cross-scale
relationships between those fire environment data.
What it all comes down to is we collect very fine-
grained field data on fuel composition, and then dilute
the precision of those data by lumping them into fire
behavior fuel models that fit known equations.  The
lumping hides switching constraints inside the aggre-
gates, generating middle number effects.  ANNs pre-
serve the original data resolution and develop a com-
plex, continuous function to describe the fuel landscape.

It is ironic that the decades-long effort to produce a
spatially-explicit model that accurately predicts fire
behavior has pushed input data requirements beyond
that which the typical end user is able to provide.  Fu-
els vary continuously across the landscape, but current
concepts of fuel models require human judgement to
assign fuels to discrete categories.  Each evaluation
becomes a separate constraint on the model.  What is

needed is a new theory of fuel models to inform a com-
plex systems methodology that integrates the three el-
ements of the fire environment triangle into a robust,
continuous description of fire fuel.

Since one cannot directly measure fire behavior fuel
models (FBFMs) in the field, Keane et al. (1999) hy-
pothesized that FBFMs could be related to the biophysi-
cal environment, species composition, and stand struc-
ture.  Results show that while one can accurately map
the biophysical, species and stand properties, the rela-
tionship between these elements and FBFMs is not well
known and thus the derived fuel model layers had low
accuracy.  A knowledgeable and experienced team
achieved only a 50-70% accuracy rate in developing
FARSITE input layers on 1.5 million acres of the Gila
Nation Forest (Keane, et al. 1999).

Results from the Gila National Forest mapping effort
indicate that a different approach to describing fuel on
the landscape is necessary.  Fire environment variables
should be mapped at a resolution appropriate for the
variable in question and kept as close as possible to
that original scale.  FBFM categorization, via multi-
step classification and aggregation procedures, dilutes
the precision of the original data.  Fuel landscapes are
composed of more than the vegetation on them; that
vegetation also has a history associated with it
(Havlicek 1999).  FBFMs can be modified to incorpo-
rate short-term weather, but climatic factors vary dur-
ing the entire lifetime of the vegetation, subtly (or not
so subtly) influencing fuel loading.  The cross-scale
interactions between landscape and climatic processes
need to be directly addressed in any model of fire fu-
els.

As discussed earlier, artificial neural networks are very
appropriate for use in analyzing data where the rela-
tionship between the inputs and outputs is not well-
known.  How the fuel landscape was influenced by cli-
mate during its early years of development versus its
middle or later years is not easily quantified, but can
be inferred from weather records, past and present veg-
etative spectral response, landscape position, timing
and type of non-stand replacing disturbances (harvest-
ing, disease, pests, residential development), and in-
ventories of current field conditions (e.g., the three
aspects mapped with reasonable accuracy on the Gila
National Forest).  Using an ANN, spectral data from
Landsat TM or other remote sensing platform (his-
toric and current imagery) could be input directly, along
with field based mapping of other fire environment
variables.
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Raw digital numbers from unclassified satellite imag-
ery are the closest we can come to a continuous valua-
tion of landscape fuels, and various sensors integrate
spectral response over different spatial and temporal
scales.  When sub-five meter imagery and radar data
become readily available, spectral characterization of
fuel landscapes would be possible over almost the en-
tire range of human fire management interests, allow-
ing the development of a consistent, hierarchically-
organized, multi-scale fuel model developed for the
continent but scalable to regional and local consider-
ations.

To further establish the context in which the fuel land-
scape developed, additional model input layers may
include: surficial geology or soil texture; Landtype
Association (LTA) (Jordan, et al. 1996); precipitation
(day, week, month and yearly totals); hydrography;
elevation, slope and aspect; time since last fire/distur-
bance; land use/ownership; fire suppression regime;
road density; and human population/housing density.
Some or all of these elements may be important con-
text for or constraints on fire spread.  This floating
scale approach to fire and fuel modeling has implica-
tions for local, regional and state forest planning, and
also can be useful in rapid assessments of fire risk,
pointing to areas requiring more finely-scaled analy-
ses.

CONCLUSION

Over the last decade, C. S. Holling developed and re-
fined (Holling 1986; Holling 1992; Peterson, Allen and
Holling 1998) a four-box model describing how eco-
systems function (Figure 6).  The first two boxes refer
to the classic ecosystem life cycle stages, from coloni-
zation after a disturbance (Box 1: exploitation) through
succession proceeding toward climax (Box 2: conser-
vation).  This cycling of vegetation from disturbance
to climatic/edaphic climax and back to disturbance was
the traditional view of ecosystem succession in the first
half of the 20th century (Clements 1936).  Studies from
various researchers in the early 1980’s have served to
shift our understanding of succession to a more dy-
namic process (Holling 1992).

Holling (1992) makes four points: 1) following distur-
bance and during succession, invasion by persistent
species can be highly variable and dependant on many
random factors; 2) early and late successional species
can and will maintain a presence on the landscape
through time; 3) disturbance events of varying sizes
are part of the ecosystem and affect the timing of suc-
cession; and 4) there are multiple potential climax types

Figure 6. Holling’s figure-8 model of ecosystem
change.

(stable attractors), and some disturbances can move
an ecosystem between attractors (Kay 1993).  Recog-
nizing that there is not a unique successional pathway
for a given landscape prompted Holling (Holling 1986)
to add two additional elements to the model, release or
creative destruction (Box 3) and reorganization (Box
4).

The release and reorganization phases of the model
have the greatest influence on what successional path-
ways will recur in the system after disturbance.  The
accumulation of a large amount of stored capital (e.g.,
biomass) and organization (e.g., structure and feed-
back) in the conservation phase eventually leaves the
system overconnected (Allen and Starr 1982) and sus-
ceptible to some agent of change (e.g., fire).  The shift
from conservation to reorganization is rapid.  The post-
disturbance, weakly connected system is now free to
exploit the released capital and begin the exploitation
phase again.  If there is sufficient capital (e.g., organic
matter, nutrients) and information (e.g., seed source)
left in the system and its surroundings following dis-
turbance, succession may return to its predisturbance
trajectory (O’Neill, et al. 1986).  If the disturbance is
great in extent or severity (i.e., most of the capital or
information is lost) the system can change qualitatively
from one successional pathway (attractor) to another
(Ulanowicz 1997).  The arrows into and out of Box 4
signify the possibility for change in ecosystem pro-
cesses, an escape to another basin of attraction where
a qualitatively different four-box model describes the
system.

The four-box model of birth, growth, death and re-
newal processes spans many scales.  The figure-8 de-
scribing processes within a single forest stand has
smaller figure-8’s nested within it (e.g., individual tree
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birth, growth, death and decomposition) while the stand
figure-8 is nested within a larger, regional scale four-
box model.  The S-curve dynamics and multiple dis-
turbance types, incorporated into the four-box ecosys-
tem model, would show that disturbances can act seri-
ally to effect a change greater than would have oc-
curred if each disturbance was modeled independently.

Holling (1986, 1995) presents different viewpoints that
aid in understanding whence come societal perceptions
of ecology and how these relate to management.  An
equilibrium-centered view assumes nature is constant
or only changes slowly so human knowledge and tech-
nology can keep up - resources are never limited (Na-
ture Cornicopian) because we invent substitutes.  A
second view is that of dynamic, Nature Resilient, with
multiple stable states, variability, heterogeneity and
instability - it accepts that complete knowledge of the
system is\ unattainable and management must allow
variation and maintain resilient structures in the pro-
cess of extracting benefits.  From this viewpoint we
can chart a course of societal change and management
that transitions to a sustainable human presence.  Al-
ternatively, Holling’s four-box model focuses more on
Nature Resilient with nested cycles of order and col-
lapse, renewal and innovation.  A final, emerging view-
point, Nature Evolving, comes out of the more recent
sciences of chaos, complex systems analysis, self-or-
ganizing systems, nonlinear behavior and discontinu-
ous change.

From analyses of historical management practices and
modifying Holling’s four-box model, Gunderson, et al.
(1995) present a general model of ecosystem manage-
ment.  A cycle of four phases is described: 1) exploita-
tion (management to facilitate progress); 2) canaliza-
tion (management is static, while ecosystem changes
with society); 3) crisis (environmental surprises and
social conflicts arise); and 4) reorganization (manage-
ment learns and adapts to new configuration).  The
Nature Evolving viewpoint seeks interdisciplinary,
adaptive institutions that understand that constrain-
ing natural variability reduces the resilience of ecosys-
tems (Holling 1995).

The history of fire management in the U. S. has expe-
rienced several of these cycles on a local and national
basis.  With global climate change, El Nino events,
and six billion people demanding resources from our
forested lands, fire’s role as a management tool is prob-
ably approaching crisis.   The inevitable reorganiza-
tion phase will need adaptive models.  We anticipate
that our approach to wildfire modeling will have sig-

nificant impact on how we manage fire susceptible
lands and human actions on them.  With proper de-
sign, the model interface will allow fire managers to
update the ANN with each new fire, allowing the model
to change incrementally with time (hopefully tracking
fire regime changes in real time).  The influence of
short-term (days or weeks) and long-term (years or
decades) climate, vital environmental constraints, could
be assessed and directly incorporated into the ANN.
These evolutionary abilities of the model will prove
useful in light of the uncertainties of global climate
change.  Furthermore, by decomposing the ANN
weights we hope to find the environmental factor
thresholds that, once crossed, allow fires to escape sup-
pression and control efforts.  An ANN-based model-
ing approach will determine what factors control fire
on a given LTA, watershed or forest, and whether those
factors are the same or different on each landform ana-
lyzed.

Recognition and characterization of the emergent prop-
erties of wildfire (Green 1993b) with changing con-
trolling factors are vital to developing long-term eco-
system management strategies.  By not incorporating
these concepts managers will continue to be surprised
by, and unprepared for, catastrophic wildfire events.
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